وتسعون ، وأقل من خمسة عشر لأن مجذورها مائتان وخمسة وعشرون ، وكذا في كل ما لا (١) يكون لمجموع مربعي الضلعين جذر منطق.
السادس : نفرض خطا من جزءين ، فنضع فوق أحدهما جزءا ، فتحصل زاوية قائمة ، فوترها يجب أن يكون أقل من الثلاثة وأكثر من الاثنين ، لما بين أقليدس من أن وتر القائمة أقل من مجموع ضلعيها ، وأكثر من كل منهما.
السابع : نفرض مربعا من أربعة خطوط مستقيمة ، مضمومة بعضها إلى البعض ، على غاية ما يمكن كل منها من أربعة أجزاء ، فقطره خط يحصل من الجزء الأول من الخط الأول ، والثاني من الثاني ، والثالث من الثالث ، والرابع من الرابع. فإن كانت متلاقية كان القطر مساويا للضلع ، ويبطله شكل العروس ، وإن كان بينها فرج ولا تكون إلا ثلاثا ، فإما أن يسع كل جزء (٢) منها جزءا فيكون القطر كالضلعين سبعة أجزاء ، وهو باطل بالشكل الجاري ، أو أقل فينقسم الجزء ، وبما ذكرنا من استقامة الخطوط وتضامها على غاية ما يمكن يظهر امتناع أن تقع الفرج فيما بين بعض الأجزاء دون البعض.
قال (ومنها)
[ما يبتنى على مقدمات لا سبيل إلى إثباتها وهي وجوه :
الأول : لو كان الجسم من الجزء لكان ذاتيا له ، فيكون بيّن الثبوت.
ورد بأن ذلك في الأجزاء العقلية وبعد تعقل الماهية.
الثاني : الجزء متناه فيكون متشكلا ، فإن كان ضلعا (٣) انقسم ، وإن كان كرة فعند الانضمام يبقى فرج أقل من الجزء.
وردّ بأن ذلك في الأجسام الكرية.
__________________
(١) في (ب) بزيادة مالا
(٢) سقط من (أ) لفظ (جزء)
(٣) في (ب) مضلعا بدلا من (ضلعا)